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Protocol Applications
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Abstract—Trusted Platform Module (TPM) is a coprocessor
for detecting platform integrity and attesting the integrity to the
remote entity. There are two obstacles in the application of TPM:
minimizing trusted computing base (TCB) for reducing risk of
flaws in TCB, for which a number of convincing solutions have
been developed; formal guarantees on each level of TCB, where the
formal methods on analyzing the application level have not been
well addressed. To the best of our knowledge, there is no general
formal framework for developing the TPM-based protocol appli-
cations, which not only guarantees the security but also makes it
easier for design. In this paper, we make fine-grained refinement
on TPM-based security protocols to illustrate our formal solution
on the application level by using the Event-B language. First, we
modify the classical Dolev-Yao attacker model, which assumes
normal entity’s compliance with the protocol even without TPM’s
protection. Thus, the classical security protocols are vulnerable in
this modified attacker model. Second, we make stepwise refine-
ment of the security protocol by refining the protocol events and
adding security constraints. From the fifth refinement, we make a
case study to illustrate the entire refinement and further formally
prove the key agreement protocol from DAAODV, the TPM-based
routing protocol, under the extended Dolev-Yao attacker model.
The refinement provides another way of formal modeling the
TPM-based security protocols and a more fine-grained model to
satisfy with the rigorous security requirement of applying TPM.
Finally, we prove all the proof obligations generated by Rodin, an
Eclipse-based IDE for Event-B, to ensure the soundness of our
proposal.

Index Terms—Event-B, formal method, key agreement proto-
cols, refinement, security protocols, TPM.

I. INTRODUCTION

T RUSTED platform module (TPM) [1], [2] is a secure co-
processor which is embedded on motherboard of many

new laptop computers since 2006. The primary feature of TPM
is to measure and to ensure the integrity of its platform. The
TPM contains several PCRs (Platform Configuration Registers)
that allow a secure storage and reporting of security relevant
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metrics. Starting from power-on boot process, the TPM stores
the measurement of the boot loader to PCRs. After that, the boot
loader takes control of the platform, extends the measurement
of OS block to PCRs, and transfers the control to the OS. Sim-
ilarly, the measurement is extended to application level. Thus,
the measurement stored in PCRs represents the integrity of a
platform: if the platform is contaminated, the value of PCRs
changes. The next feature of TPM is to attest its PCRs to the
remote entity. The remote entity checks the PCRs and the sig-
nature to verify the integrity of the platform.
Though it seems more secure to use TPM in platform and

protocol design, a design flaw of the platform would cause the
protection failure, which is an obstacle in the application of
TPM. Therefore, many approaches on TPM focus on the cor-
rectness of platform design [3]. For instance, some approaches
minimize the Trusted Computing Base (TCB) [4] in order to
reduce the risk of flaws in the TCB, which is the set of all hard-
ware, firmware, and/or software components that are critical
to the platform’s security. Recently, convincing solutions have
been made on minimizing TCB by both hardware [5] and soft-
ware design [6], [7]. Though the TCB could be minimized, the
problem of correctness of TCB still exists. Other approaches
formally verify or prove the correctness on each level of TCB,
including the TPM APIs [8]–[12], OS [13], and communication
protocols [14]–[16].
However, to the best of our knowledge, the formal methods

on the application level of TCB have not been well addressed,
where two major problems need to be solved. The first one
is redundancy. While the bottom level of TCB is designed as
common components which are shared by upper applications,
there are also common ways of developing on the application
level. Since the formal development is much more sophisti-
cated than normal ones, a novel model, which has done the
common work shared by most applications, will greatly reduce
the redundancy and make the formal development much easier.
The second problem is the formal correctness of fine-grained
models. Most of the formal approaches, such as [14]–[16],
verify or prove the correctness of TPM-based protocols in an
abstract way, rather than a fine-grained one. However, it is not
guaranteed that fine-grained software is still sound, even if the
soundness of the abstract protocol is proved. Because an inex-
perienced developer is prone to mistakes in implementation.
Unfortunately, in TPM-based environment, the fine-grained
correctness needs to be reassured, which determines the validity
of TPM’s protection.
In this paper, wemake fine-grained refinement on TPM-based

security protocols to illustrate our formal solution on the appli-
cation level of the TCB. This paper follows the work [17] while
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they made formal analysis of classical security protocols rather
than TPM-based protocols. Another difference is that we make
fine-grained refinement where the code in final refinement step
is closer to C language. By refinement, the above problem of re-
dundancy and fine-grained correctness can be solved. We also
learned lessons from [18], which reviewed the recent develop-
ment on formal modeling security protocols. [12] also verified
the implementation of security protocols by refinement, which
is similar to our work. But they mainly verified the security pro-
tocol of TPM APIs in the case study, i.e., the key management
inside the TPM, while we verify the protocol applications that
only use TPM APIs as interfaces.
The basic idea of our approach is as follows. First, we modify

the classical Dolev-Yao attacker model, which assumes that the
normal entity is not compromised. In modified attacker model,
the entity is not compromised only if its platform is protected
by the TPM. So, the classical security protocols are vulnerable
in our model, for the normal entity, which are not protected by
the TPM, can be controlled by adversaries. Second, we refine
the TPM-based security protocols using Event-B [19], [20]. In
early refinement steps, we model the basic function of TPM,
communication channels, communication operations and some
of the security constraints. The purpose is to build common steps
of developing such that these steps don’t need to be modified
and are the base for building new protocol applications. In other
words, we try to solve the redundancy problem in early refine-
ment steps. In the following steps, we make a case study on a
TPM-based key agreement protocol aiming to illustrate the en-
tire formal solution and to ensure the security on the fine-grained
level, which deals with the second major problem.
In the case study, we solve the key agreement problem which

is stated as follows [21]: two entities assuming and wish
to agree on keying information in secret over a distributed
network. Each party desires an assurance that no party other
than and can possibly compute the keying information
agreed. This is the authenticated key agreement (AK) problem
[22], [23]. Several techniques related to the Diffie-Hellman
(DH) key-exchange protocol [24] have been proposed to solve
the AK problem, and formal techniques on analyzing these
protocols have also been proposed [21], [25], [26]. However,
few TPM-based security protocols and related formal anal-
ysis have been proposed. In our former work, we proposed a
TPM-based secure routing protocol, named DAAODV [27].
The protocol contains two steps: the key agreement step and
the routing step. On the key agreement step, the authentication
of each node is based on TPM and the key exchanging is based
on DH algorithm. Therefore, from the 5th refinement (R5), we
make a case study on the key agreement process of DAAODV
and solve the AK problem in the final refinement.
Finally, we show the soundness of our proposal by proving

all the proof obligations (POs) in the refinements. The POs are
generated by Rodin, an Eclipse-based IDE for Event-B. If all
the POs are successfully proved, the protocol complies with the
constraints that are specified in the model.
The paper is organized as follows: In Section II, we give

a brief overview of TPM and Event-B. Section III presents
attacker model and security assumptions. Section IV details the
refinement on general TPM-based security protocols. Section V

proposes the fine-grained refinement on a TPM-based key
agreement protocol. Section VI shows the result in refinement
and proving. Finally, some concluding remarks are made in
Section VIII.

II. PRELIMINARIES

A. Trusted Computing

Trusted Computing [2] is a technology developed and pro-
moted by the Trusted Computing Group. It is based on a co-
processor Trusted Platform Module (TPM) which is embedded
on the motherboard. TPM is shielded with several components,
including the PlatformConfiguration Registers (PCRs), Attesta-
tion Identity Key (AIK), Endorsement Key, nonvolatile storage,
cryptographic engines, etc.
One feature of the TPM is integrity measurement. The TPM

obtains metrics of platform characteristics that affect the in-
tegrity of a platform and puts digests of those metrics in its
PCRs. There are at least 16 PCRs in a TPM and a PCR is a
160-bits shielded location to hold an unlimited number of mea-
surements by the operation extend as the following:

Based on the measurement feature, one way of enforcing
the platform integrity is to extend the trusted boundary from
the root level to OS and application level. It is implemented
by measuring the target code before execution control is trans-
ferred. This is called the Static Root of Trust Measurement
(SRTM). The other way is the Dynamic Root of Trust Measure-
ment (DRTM): the application directly takes control of TPM,
CPU, and physical memory, and works in isolation with OS
and other applications. It is implemented by calling the CPU
instruction SKINIT/SENTOR. The CPU extends measurement
of the application block to PCR 17, isolates the block from
OS and other applications and then transfers the control to
the application. DRTM is adopted by TPM specification 1.2,
known as Intel Trusted Execution Technology (TXT) [5] and
AMD Secure Virtual Machine (SVM).
Another feature of the TPM is remote attestation. TPM is

uniquely identified by the 2048 bits key pairs, named Endorse-
ment Key (EK). EK is generated by manufacturers and perma-
nently bound to the TPM. EK can be recognized by manufac-
turers but cannot be identified by others. Instead, the entity
generates Attestation Identity Key (AIK) inside TPM for iden-
tification. Then, gets the certificate of AIK by communicating
with the privacy CA and uses the certificate for attesting that
the AIK comes from the valid TPM. Meanwhile, the PCRs are
signed by AIK. Hence, on receiving ’s public key of AIK, the
certificate and the signature, remote entity is capable of veri-
fying ’s platform integrity.
However, TPM has to communicate with privacy CA when a

new AIK pair is generated, such that the original scheme faces
the potential bottleneck problem which is caused by privacy
CA. To solve this, a new remote attestation scheme named
Direct Anonymous Attestation, (DAA) [28] was proposed. In-
stead of privacy CA, TPM first gets the membership certificate
by the operation Join with an issuer . By using the certificate,
can sign the AIK with a nonce named challenge every time
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a new AIK pair is generated. It is called
in this paper. As a result, the running privacy CA is no longer
needed in remote attestation. Additionally, for Zero-Knowl-
edge-Proofs are used in the scheme, the signature is anonymous
that it doesn’t expose the identity of TPM.
The integrity measurement in remote attestation has also been

improved. As the TPM directly signs the PCRs with AIK, the
values of PCRs are exposed. There is a chance for an attacker to
guess the identity of the entity’s platform through the analyza-
tion of the values of PCRs. So, [29] proposed a scheme named
Property-based Attestation (PBA). By using the ,
where is the challenge sent from TPM, the TPM signs the
PCRs without exposing the values of PCRs, but can attest that
the values belong to a specific set of configurations. We model
the interface of DAA and PBA scheme in the refinement.
Additionally, the term trust, which is defined by TCG

(Trusted Computing Group) [2], is adopted and modeled in
the paper. It is the expectation that a device will behave in a
particular manner for a specific purpose [30]. In other words,
the platform is trusted if it preserves its integrity according
to its PCRs. It is worth noting that the platform may also be
vulnerable even if it is trusted. For instance, if there is a design
flaw on the application level of the platform, the remote entity
may also attack the platform without modifying the platform.
In this case, the platform is still trusted but insecure.

B. Event-B

Event-B [19], [20], [31] is considered an evolution of the B
method [32]. It is defined in terms of a few simple concepts that
describe a discrete event system and proof obligations (POs)
that permit verification of properties of the event system. Key
features of Event-B are the use of refinement to represent sys-
tems at different abstraction levels and the use of mathematical
proof to verify consistency between refinement levels.
An Event-B model consists of several components of two

kinds: machines and contexts.
Contexts contain the static parts of a model. These are con-

stants and axioms that describe the properties of these constants.
Machines contain the dynamic parts of a model. A machine is

made of a state, which is defined by means of variables denoted
by . They are constrained by invariants . Invariants are
supposed to hold whenever variables values change. But this
must be proved first.
Besides its state, a machine contains a number of events

which specify the way the state may evolve. Each event is
composed of a guard and an action. The guard is the necessary
condition under which the event may occur. The action, as its
name indicates, determines the way in which the state variables
are going to evolve when the event occurs.
An event may be executed only when its guard holds. Events

are atomic and when the guards of several events hold simulta-
neously, then at most one of them may be executed at any mo-
ment. The choice of event to be executed is nondeterministic.
An event, named , has the following form:

Fig. 1. Model and context refinements in Event-B.

If the guard is true, then may be executed, evolves
to by the state transition . Informally in this case, by
mathematical induction, two types of POs are generated: (1) on
initialization, is true, (2) if is true, then is pre-
served after is executed.
From a given machine M, a new model N can be built and

asserted to be a refinement of M. Likewise, context C seen by a
model M, can be extended to a context D, which may be seen by
N. A typical example of the machine and context relationship is
shown as Fig. 1.
The extension of a context consists of adding new sets and

new constants. These are defined bymeans of new axioms. Con-
sequently, no specific proof obligations are associated with con-
text extension.
Unlike the situation of extending context, the concrete ma-

chine N has a collection of state variables , which must be
completely distinct from the collection of variables in the ab-
straction M. Instead, Event-B only allows the transparent reuse
of variables in refinement. Machine N also has an invariant
dealing with these variables . But contrary to the case of ab-
stract machine M, where the invariant exclusively depended on
the local variables of this machine, this time it is possible to
have the invariant of N also depending on the variables of its
abstraction M. So this invariant of N “glues” the state of the
concrete machine N to that of its abstraction M. Informally, on
refining an existing event , two POs should be proved: (1) the
guard in the abstract event can be implied from the guard
in the refined event , (2) given the before-after state variable

in refined event and the corresponding state variable
in , there exists an instance which is evolved from in
and still satisfy the glue invariant . Other techniques on
refinements (e.g. the refinement on new events, dead lock pre-
vention), which are not used in our approach, are not introduced
in the section.

III. ATTACKER MODEL AND SECURITY ASSUMPTIONS

In classical Dolev-Yao attacker model [33], the adversary can
overhear, intercept, and synthesis any message and is only lim-
ited by the constraints of the cryptographic methods used. But
the model excludes the possibility of breaking the platform’s
integrity. On the other side, the main feature of TPM is to mea-
sure and attest the integrity of the platform. Hence, the existence
of TPM doesn’t affect the result of security analysis under the
Dolev-Yao model. Besides, the TPM-based security protocol is
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intuitively more secure than the one without a TPM. The contra-
diction is caused by the unbalance relation between the weaker
attacker model and the stronger protection.
Some approaches, based on Dolev-Yao model, made addi-

tional analysis, such as adding the Oops events [18] in secu-
rity protocols. At Oops events, the communication entity has a
chance to violate the protocols, e.g., the session key is lost by ac-
cidents. In other words, by introducing the Oops events, it is as-
sumed that the attackers can make specific attacks. In addition,
extra analysis is made for evaluating the potential loss caused
by Oops events. However, it’s the last resort unless the TPM is
utilized: the definition of Oops events relies on the specific vi-
olation and the incomplete definition makes formal verification
unreliable. So, the other purpose of modifying the Dolev-Yao
model is to get rid of Oops events to reduce the sophisticated
additional analysis.
We define the attacker model as follows:
1) The adversary controls the network and can perform any
message operation except cryptanalysis. We inherit it from
Dolev-Yao attacker model. The adversary gets every mes-
sage that is sent on the network, and can prevent delivery
of any message or redirect it to agents other than the in-
tended recipient. In addition, the adversary can break up
messages into components by splitting up concatenated
ones, and opening up cipher-texts sealed with the key that
the adversary knows. Finally, the adversary can form new
messages at free will by concatenation and encryption. It
is also assumed that the adversary cannot use any crypt-
analytic technique to derive significant information from
cipher-texts, which is also a part of the Dolev-Yao model.
We make this assumption for two reasons. One reason
is that the length of the RSA keys inside TPM, such as
AIK, EK, SRK, is 2048 bits, and the TCG group specifies
some techniques for preventing such attacks. For example,
TCG group chooses OAEP for RSA-padding, which meets
indistinguishability under chosen-plaintext attack (IND-
CPA) [34]. The other reason is that though there are still
possibilities of such attacks, our current work only focuses
on the security of the application level, which merely uses
the crypto commands as interfaces.

2) The adversary controls the entity without TPM’s protection
and the entity with the fake or tampered TPM, but cannot
get the AIK credential of the fake or tampered TPM. We
assume that there is no other protection mechanism, ex-
cept that the TPM can measure the integrity and check if
the platform is compromised. Thus, if the entity is not pro-
tected by the TPM or is protected by a tampered TPM,
we assume that the entity’s platform is already compro-
mised to maximize the capability of the adversary. When
the TPM is tampered, the adversary can access the TPM,
where the private key of AIK can be read and used to sign
any PCR values. The adversary can also forge a fake TPM,
(e.g., the software-based TPM emulator [35]). There are
also limitations. We assume only the real and unbroken
TPM can get the credential of its AIK from the issuer in
the DAA scheme or privacy CA. Otherwise, the adversary
can perform any remote attestation with success.

3) The adversary controls the entity which is protected by real
and unbroken TPM if the value of the TPM’s PCRs is not
in the trust list. In this case, the platform of the entity may
be tampered. We assume that there are various of trusted
platforms and their measurement values stored in PCRs
are recorded in a trust list. On the contrary, we assume the
entities whose platform are not in the trust list are already
tampered.

4) The adversary cannot modify the platform of the entity
which is protected by real and unbroken TPM if the value
of the TPM’s PCRs is in the trust list. That is, the adver-
sary can only control it through the network if it has design
flaws, rather than controlling the platform directly.

There are also security assumptions related to the TCB. We as-
sume the bottom level of the TCB has no flaws in the design.
1) The adversary cannot illegally control the TPM. Though
there were formal analysis on the TPM APIs [8]–[12] and
flaws have been found, the security of the TPM is not con-
cerned in the paper. Besides, we assume that there is no
flaw in remote attestation of TPM (e.g., DAA scheme, the
scheme based on Privacy CA) and the platform (e.g., PBA
scheme, the scheme in TPM specification).

2) The adversary also cannot illegally control the level be-
tween TPM and protocol application. The middle level can
be implemented in two ways, the SRTM and DRTM, as il-
lustrated in Section II-A. Though, it is hard to guarantee
the correctness in designing the OS in SRTM, it is realiz-
able in DRTM as the OS is excluded from TCB and the
code size in this level becomes small.

3) The adversary can illegally control the protocol applica-
tion if there is a flaw in the application. In this case, the
adversary can illegally control the application through the
flaws in all refinement steps. In many approaches, the pro-
tocol events were first abstracted and then analyzed. On the
contrary, we model and refine the protocol event to ensure
that the implementation is still correct in this work.

We further assume that the platform runs only the TPM-based
security protocol that the TPM only measures the protocol soft-
ware and the bottom computing base. Though the TPM canmea-
sure numerous pieces of software, we simplify the TPM’s func-
tion. In other words, we assume that the PCRs are constants and
unique to the specific platform. Thus, in the refinement, the bi-
jection of the TPM and platform can be built such that PCRs
in TPM corresponds to the configuration of the platform and
the protocol software. The purpose of these assumptions is to
prune the conditions which are not related to the AK problem in
TPM-based protocols.

IV. EARLY REFINEMENT ON GENERAL TPM-BASED SECURITY
PROTOCOLS

Our refinement is mainly composed of two parts: refining
the machine, where we mainly refine the protocol events and
finally build the pseudocode of each event; extending the
context, where we define the environment and axioms that
never change.
Roughly speaking, starting from the initial context, two sets

representing the entities and messages are defined. In the initial
machine, we model the communication channels through which
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the entities transfer the messages to others. Naturally, the events
Send and Receive are also modeled. In first extension of context
(E1), the entities are divided into TPMs and platforms that are
protected by TPMs. In first refinement of the machine (R1), the
communication channels and the events are divided as well. In
E2, the abstract messages are refined into several subsets which
represent different types. The cryptographic functions are suc-
cessively modeled according to different crypto types, e.g., en-
cryptions and signatures, etc. In addition, the operations on these
types of messages are modeled, such as breaking up and con-
catenating messages, which are the abilities of the adversaries
as defined in the attacker model. E3 further models the TPM
environment in which relevant crypto sets are derived from the
sets in E2. Back to R2, confidentiality is constrained on several
types of abstract variables which are maintained by each entity.
These abstract variables are then refined into concrete ones in
R3. Finally, R4 does the additional work for sufficient prepara-
tion on concrete protocols.

A. Initial Machine and Context

The initial machine and context provide the basic abstract
elements of the communication infrastructure.
In the context, two carrier sets are defined: AGENT andMSG

respectively. AGENT represents set of communication entities.
MSG represents the set of messages which are sent, received and
processed by the entities in AGENT.
The machine is composed by the event Send and Receivewith

the variable channelwhere
. When the message is sent from to , a new ele-

ment is added to channel. When receives the
message from , the element is removed
from channel accordingly. For instance, the event Send is de-
scribed in Algorithm 1.

Algorithm 1 Event Send in initial abstract machine

Event Send
any

where

then

end

It is worth mentioning that the type of variables in Event-B.
Variables of one type only represent global states of the ma-
chine which may change when an event occurs. They do not
exist in the protocol application of each entity. For instance, in
Algorithm 1, and in the tuple represent
the real sender and receiver of the message , which means
is definitely sent from and is definitely received by if

TABLE I
DEFINITION OF SUBSETS DIVIDED FROM

is in channel. That is, if intends to send to
but the adversary captures , then the tuple ,

other than , is put in the channel. Thus, channel
only represents a state in the abstract machine. Variables of the
other type not only represent the state but also represent the data
maintained by each entity, which will be explained in the next
subsections.

B. First Refinement and First Extension

The TPM is independent of its platform since it has its own
secure storage and cryptographic engines and can communicate
with the platform. Thus, in 1st extension of context (E1), the
carrier set AGENT is divided into PLATFORM and TPM respec-
tively. It is implemented by the statement:

That is, and
. As assumed in Section III, we define the

bijection from the TPM to its platform as follows:
For simplicity, if has no TPM, there is

an equivalent value which represents tampered TPM.
Hence, in 1st refinement (R1), and are refined

from channel, with , , and
. represents the public channel between plat-

forms, whereas represents the private channel between
TPMs and their platforms.
Furthermore, the Send event is refined to SendPub, Send-

fromTPM, SendtoTPM. In SendPub, new tuple
is added in , while in SendtoTPM and SendfromTPM,

is added to . The Receive event is re-
fined to ReceivePub, ReceivefromTPM and ReceivebyTPM in a
similar way.

C. Second Extension

In the second extension of context (E2), in order to express
the message types, the carrier set MSG is divided into subsets
following with related functions defined. So the set MSG are
divided into subsets by the clause partition: STRUCT, ,

, AENCRYPT, SKEY, SENCRYPT, SIGN, , ,
HASH, NORMAL. The definitions of the subsets are shown in
Table I.
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Then the constant and
and the function type is defined as

follows:

For all the iff .
Next, to differentiate structures further in STRUCT, we define

the struct as follows:

If , is a structure which is combined with
several messages. Since the number of messages in the struc-
ture is undetermined, we use to represent the size of the struc-
ture, i.e., if the size of is , is total function that

, and means the th
message in for .
STRUCTTYPE and structType are also defined for differenti-

ating the types of the structures:

For , .
If the size of is , ,
which means for ,

. TYPE will be extended to
in further extension when the

set MSG is further partitioned. Likewise, STRUCTTYPE,
structType will also be extended.
Note that , denote the type of public and

private keys of both ciphertext of type AENCRYPT and signa-
ture of type SIGN respectively. All the plain texts of encryp-
tions and signatures are structures. For ,

and denote the structure of
plaintext that is encrypted and the corresponding private key.
For , , , and
denote the corresponding data structure, private key, public key,
and the challenge of the signature . For ,

and denote the structure of
plain text that is encrypted and the symmetric key encrypting

.
In DH algorithm, Alice generates a private part

and the public part , while Bob generates a private
part and the public part . They exchange
the public parts, and calculate the symmetric key and ,
where , , ,

. According to the property of DH algorithm,
the value of equals the value of , we define the function

as follows:

Fig. 2. Refined messages and related functions. The normal arrows represent
total functions and the two headed arrows represent bijections.

where the , i.e., and
.

For , we define , where
is the hash value of and is the public key

corresponding to the private key . Thus, we have the relation
of these bijections and functions in Fig. 2. We model parts of
the first assumption in attacker model: the adversary can per-
form any message operation except crypto analysis. That is,
the adversary can break up messages into components by the
function , and can form new
messages by . This idea is
drawn from [18] which is based on higher-order logic. Instead,
we define analz and compose recursively in Event-B, which is
based on first-order logic. However, the definitions of analz and
compose is not enough to prove confidentiality in further re-
finements. For instance, for , it is hard to deter-
mine whether is in , such that the result
of still cannot be solved by the recursive definition.
Thus, we define and the related ad-
ditional axioms to assist proving. For ,
represents the set of messages possible to be analyzed. For in-
stance, for , if is the element
in , then no matter whether

can be analyzed from . So, if
, then . Else if , it

can also be judged by parts, though it is more complicated than
the former condition.
The verification process is also defined as a func-

tion: . For
and , if is the valid sig-

nature of , , otherwise
. In the next extension, verify is

extended to several types, including DAAVerify and PBAVerify,
etc.
It is worth noting that the message operations and verifica-

tion processes are defined as functions in context whereas the
sending and receiving processes are modeled as events in a ma-
chine. Because the former processes do not affect the security
status of the entities while the goal in the machine is to check
if the invariants hold when the state changes. Instead, the result
of the former processes is used in the events. For instance, in
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TABLE II
PARTITIONING THE SETS IN THIRD EXTENSION

ReceivePub events, the platform alters the trust state of others
according to the result of .

D. Third Extension

The third extension (E3) focuses on modeling the TPM-based
environment.
Like the inheritance mechanism of Java or C++ program, the

type of MSG is refined in depth. The key pairs embedded in
TPM, such as AIK, DAA key pairs, are derived from
and . For instance, is refined as follows:

Similar to NORMAL, is abstract set of public keys
which can be extended in further extensions. Likewise, we par-
tition several sets in Table II.
For convenience, some sets used in the case study are de-

fined, e.g., the key pairs and , which are the
key pairs of and , which collects the pseudo
names of entities.
In addition, the key word trust is modeled. In the definition of

TPMmain specification [2], trust is the expectation that a device
will behave in a particular manner for a specific purpose. More
specifically, the device is armed with unbroken TPM, and the
PCR value is in the trust list which records the ones of the trusted
platforms. Thus, for :

where represents the set of TPMs which are not tam-
pered, represents the set of PCRs which are in the trust
list and for , repre-
sents the PCR value of . In our model, it is assumed that the
adversary’s platform is also not trusted. Because if the platform
is trusted, the platform will act according to the protocol appli-
cation, and is not capable to attack other entities.
On verifying if is in , we define the DAA

verification ,
i.e., if a TPM succeeds in DAA verification, it is not tampered:

On verifying if is in , we define the
PBA verification

, that if a TPM succeeds in PBA verification, its

platform is not tampered:

where and are bijections that for ,
and represent the private keys of DAA and AIK which
are shielded in . Noted that it is not the complete implication if
succeeds in DAA or PBA verification. There are other prop-
erties of DAA and PBA, such as anonymity. In our model, we
only consider the authenticity and confidentiality related to AK
problem, and the other properties of DAA and PBA are out of
scope and not discussed in this paper.

E. Second Refinement

In the second refinement of machine (R2), the variables which
are maintained by TPMs and platforms are defined. Following
that, the ability of adversaries on capturing the variables and
constraints on the variables for preserving the confidentiality are
modeled as follows.
First, there are public and private messages stored in TPM and

PLATFORM: , , , . For ,
and denotes the public messages maintained by and can
be sent to via . For ,
and denotes the private messages maintained by . Mes-
sages in cannot be analyzed from its platform or
by adversaries if , according to the first assumption
in Section III. Likewise, and represent the private
and public messages maintained by respectively. Besides the
states in the machine, indicate the variables which
can be refined to concrete ones and corresponds to the variables
in application implementation of C language.
Next, we model the knowledge maintained by the adversary.

In the first assumption in attacker model, the adversary can
eavesdrop messages. In our model, these messages are stored
in variable representing the knowledge. Thus, in the event
SendPub (see Algorithm 1) message which is put in is
also stored in , i.e., in THEN clause, the substitution

is added. To guarantee this attacker’s ability, we add
the following invariant:

Hence, to prevent the attacks by adversaries, a constraint on
confidentiality is defined as an invariant:
Inv_confidentiality_1: Messagesmaintained by the platform
cannot be analyzed or composed from the adversaries if is

trusted:

In this invariant, the adversary analyzes and composes mes-
sages not only from , but also from the untrusted platforms.
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We assume that if the platform is not trusted, then messages
in are obtained by the
adversary as well.
To satisfy the constraint, we add guards in the events to

prevent the specific messages from sending. For example, in
SendPub event, the guards are added in where clause:

For the trusted platform , the first guard prevents themessages
in from sending, and the second guard prevents the pri-
vate parts of DH algorithm from sending. We also constrain the
capability of sending messages according to their own knowl-
edge. For instance, the following guards are added in where
clause:

For the platform , only possesses and composes messages
from and , if is trusted, otherwise can ana-
lyze and compose messages from and the variables in un-
trusted platforms.
To both satisfy Inv_confidentiality_1 and make it achievable

in further refinements, we make additional constant in E3
and related invariants in R2. As shown in the first assumption
in attacker model, the attacker cannot perform crypto analysis,
i.e., it is not allowed that the adversary generates the same asym-
metric keys owned by the trusted entities by accident. In this
model, is defined as the set of messages which cannot be
generated from adversaries:

Next, we make additional invariants on : for every plat-
form ;
messages if the platform is trusted. As a result,
we make and prove the invariant fol-
lowing which it is helpful to prove many proof obligations on
R6.
To make it easier for proving in the next refinements, we

also make constraints on such that only the specific
types are allowed to be stored in the specific variables. Besides,
it is not allowed that the secret messages generated by different
nodes intersect.

F. Third Refinement

In the third refinement of the machine (R3), the abstract vari-
ables are refined and replaced with concrete vari-
ables.

TABLE III
REFINED VARIABLES IN THIRD REFINEMENT

These variables are named with three prefixes:
• represents the variables owned by specific TPM. For
instance, means that
represents the private key of AIK in .

• represents the variables owned by specific platform. For
instance, that

represents DAA signature owned by and ob-
tained from .

• represents the variables which are maintained by the
platforms. For instance,

tells that is maintained by
and represents symmetric key between and the platform
whose pseudo name is . Noted that all the maintained
variables are partial functions. They are empty after initial-
ization, and then added with new values when the specific
events occur.

Then, are refined by glue invariants. For example,
for :

The refined variables are listed in Table III:
Corresponding to Inv_confidentiality_1 in R2, this property

on concrete variables in R3 is constrained by the above glue
invariants. If the glue invariants hold when the events in R3 are
executed, Inv_confidential-ity_1 also holds in R3.

G. Fourth Refinement

The fourth refinement of themachine (R4) does the additional
work for the sufficient preparation on concrete protocols.
The event SendPub is refined to SendPubt and SendPubf.

SendPubt denotes the messages sent by , where
, and the SendPubf denotes the messages sent by

where . Thus, the guards of SendPub
in R3 are separated depending on whether is trusted. The
SendPubt is further refined to several events according to the
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Fig. 3. Simplified key agreement process in DAAODV.

concreted protocol. The event SendPubf is finished modeling
at this level and will not be further refined. Thus, SendPubf can
analyze and compose messages from the adversary’s knowledge
and send messages to any platforms.
We define the constant PMTYPE in E4, and constrain the

types of messages in SendtoTPM, SendfromTPM, SendPubt and
SendPubf by PMTYPE.
and denotes protocol message types which is defined in concrete
protocols. It is also reasonable to constrain SendPubf, as the re-
ceiver first checks the types before processing. The purpose is
to make it easier for proving by the additional constraint.

V. CASE STUDY

We make fine-grained refinement on the key agreement
process of DAAODV [27] protocol. DAAODV is a TPM-based
routing protocol. It contains two processes. One is the key
agreement process based on TPM and the other is the secret
routing process where all the messages transferred between
neighbors are encrypted with symmetric keys generated in the
former process. To solve the AK problem, the key agreement
process are further modeled in the case study.

A. The Key Agreement Process of DAAODV

In DAAODV, the platforms are identified by the pseudo name
(PN), instead of the real ID. They periodically alter the PN
and the AIKs to achieve the anonymity. In the key agreement
process, a platform authenticates the neighbor using the DAA
and PBA scheme. At the same time, they exchanges the public
part of the DH algorithm. If they both succeed in authentication,
they use the symmetric key generated by the DH algorithm for
exchanging the messages in the routing process.
Additionally, as the computation overhead of DAA and PBA

scheme is large, if a platform directly verifies the DAA and
PBAsignatureof anddoesnot save the resultsofverification,
is easy to suffer the DoS attacks. Because has to verify

continually if finds the false signature of , for there may
be attackers forging the messages tagged with , though

may be trusted. Thus, to prevent the potential DoS attacks, the
light-weighted signature and verification scheme (Hash-Sign,
HSign) are used before verifying the DAA and PBA signatures.
In the protocol, PN and plaintexts are signed together by HSign
scheme and PN is bound to the public key of HSign signature
at the same time, i.e., where
is the public key and equals to the specific times on
hashing . The purpose is to prevent the adversary from
forging the messages with the PN of the trusted platforms. As
a result, if a platform finds ’s DAA or PBA signature
a false one, puts into the blacklist, and will not verify
the signature of again.
For simplicity, the relationship between PN and public key of

HSign signature is equivalently defined in the refinement:

Here is eliminated and the entity’s public key of HSign
is considered constant though and

changes at short intervals in real protocol. The reason for us to
do this is that is still a one way function and each
private key of HSign cannot be captured by adversaries for
effectively sign the messages.
We illustrate the simplified key agreement process of

DAAODV as follows and in Fig. 3:
Case 0: Each platform broadcasts Hello messages period-
ically. The message is identified by PN, and contains the
public key of AIK and theDAA signature. The DAA signa-
ture signs the public key of AIK with the value of PN as the
DAA challenge. The message also contains the public key
of HSign and the HSign signature, which signs the content
of the Hello message.
Case 1: and the platform of
receives the messages tagged with . drops the mes-
sage. In the refinement,

, and represents the record
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maintained by and is assigned with a new value after
verifies the ’s DAA or PBA signature. Specifically,

at initialization, 1 when suc-
ceeds in DAA verification, 2 when succeeds in PBA
verification, and 1 when fails in DAA or PBA verifi-
cation.
Case 2: and the platform of
receives Hello tagged with . If the HSign and DAA
signature are true, and sends
the message LinkRequest. Different from the Hello mes-
sage, the public part of DH and PBA challenge

are added. That is, asks to reply the to
build the symmetric key between and , and the PBA sig-
nature to verify the platform of . If HSign is false, drops
the Hello message. If HSign is true and DAA signature is
false, .
Case 3: and the platform of
receives the LinkRequest tagged with . If the HSign
and DAA signature are true, ,
generates the symmetric key by and ,
and sends the message LinkReply. If HSign is false,
drops the LinkRequest message. If HSign is true and DAA
signature is false, .
Case 4: and the platform of
receives LinkReply tagged with . If the HSign and

PBA signature is true, ,
generates the symmetric key by and and
sends the message LinkOK. If HSign is false, drops the
LinkReply message. If HSign is true and PBA signature is
false, .
Case 5: and the platform of
receives the LinkOK tagged with . If the encrypted
content can be decrypted by , and the PBA signature is
true, . If the encrypted content
cannot be decrypted by , drops the LinkOK message.
If the encrypted content can be decrypted by and the
PBA signature is false, .
Case 6: and

. and communicate by encrypting the mes-
sages by and and start the routing process with each
other.

B. Fifth Refinement

The fifth refinement of the machine (R5) refines SendPubt
and ReceivePub to several events which will be shared by events
in R6.
In DAAODV, there are several types of messages sent in the

public channel. In these types of messages, several common
types of submessages are generated, composed and verified,
such as signatures in .
Developers have to repeatedly implement these processes in
the final implementation, which may trigger more faults and
make the developing processing exhausting. In this refinement,
we introduce our method to solve the problem.
In Fig. 4, The SendPubt events is refined to Send-

Pubt_HSIGN, SendPubt_DSIGN and SendPubt_PSIGN and

Fig. 4. Generating sharable events from SendPubt.

each event adds the process of generating the specific signature.
These events can be shared by events in R6. In a similar way,
the ReceivePub event is refined to ReceivePub_HVERIFY,
ReceivePub_DVERIFY and ReceivePub_PVERIFY.

C. Final Refinement

In the final refinement of the machine (R6), the fine-grained
protocol events are modeled and the extra security constraints
are presented and proved.
We tagged the protocol events with number in Fig. 3,

including 1sendDAAc, 2receiveDAAc, 3sendDAAs, 4re-
ceiveDAAs, 5sendHello, 6receiveHello, 7sendRequest,
8receiveRequest, 9_15sendPBAc, 10_16receivePBAc,
11_17sendPBAs, 12_18receivePBAs, 13sendReply, 14re-
ceiveReply, 19sendOK, 20receiveOK, and INITIALIZATION
and SendPubf.
Specifically, the events which are refined from SendPubt

compose and send the messages, and the events which are re-
fined from ReceivePub verify the signatures and generate secret
data in , such as the parts of DH algorithm and symmetric
keys.
We take event 8receiveRequest in Algorithm 2 as an example.

The event 8receiveRequest occurs only when the conditions in
where clause are satisfied:

recv: The actual receiver ’s PN equals to the 3rd item in
message , i.e., .

tl: has not verified DAA or PBA signature of
.

mt: The message is LinkRequest, and the message
format is valid.

hv: verifies Hash-Sign of , and the
signature is true.

dkey: The in DAA signature is .

a2k: hasn’t generated public or private part of DH
algorithm for .

Hence, new values, i.e., , are
generated and assigned to the variables maintained by . The
constraints on these values are also in where clause:

nl: verifies if the DAA signature of . If
it is true, , otherwise, .

dh: generates new and , which are the private
and public part of DH algorithm.
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Algorithm 2 Fine-grained Refinement on Event 8receiveRequest

Event 8receiveRequest
any

where

then

end

Sm: If is a trusted platform, it generates in ,
otherwise is not in . The statement will
not be implemented in real application as it is an
assumption inferred from attacker model. Instead, it
is only used for proving.

: generates new in .

key: generates the symmetric key by composing
and .

Thus, instead of abstracting on events in classical formal anal-
ysis, the refinement in this level can be directly translated to real
application codes.
To solve the AK problem, we prove the following invariants:
Inv_confidentiality_2: The trusted platform uses a sym-

metric key shared with for encryption and sends the encryp-
tion to public, only if .

Since there are three variables in events
in the invariant, the POs is generated if one of these variables

alters in the events. The POs demand that the invariants hold
on transition of these variables. These are the general ideas of
proving the invariants: when the new key is added to
in some events, we prove that has not been used in encryption
yet; when the new message is added to , we prove that
for every encryption ,

, and for
, the invariant holds; when or

1, we prove that there is a contradiction in conditions; when
, the invariant is directly proved.

The basic idea on leveraging POs of the following invariants
is similar to this one.
In Inv_confidentiality_2, it is not clear that PN is trusted when

. Here, we prove the invariant Inv_au-
thenticity:
Inv_authenticity: For the trusted platform , if

, then is trusted.

It is delicate to prove this invariant that we add and prove dozens
of supported invariants. If readers are interested in proving,
please refer to our source code.
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TABLE IV
STATISTICS OF PROOF OBLIGATIONS PROVED ON REFINEMENT

AND EXTENSION STEPS

Hence, by Inv_confidentiality_2 and Inv_authenticity, the
messages encrypted by ’s key are sent only when the
is trusted.
Inv_confidentiality_3: If the platform is trusted and

sends an encrypted message, the encrypted message cannot be
decrypted by the adversary, since the key used for encryption
cannot be analyzed by the adversary.

That is, the adversary cannot get the key of the trusted plat-
form. Besides, the key cannot be got by other trusted entities.
Because the trusted platforms only act according to the pro-
tocol application and we have added and proved the invari-
ants in R3 that for the different trusted platforms and ,

and
. So the AK problem is solved.

VI. RESULTS

We have proved all the proof obligations (POs) generated by
Rodin 2.4, and the statistics are listed in Table IV. Most of the
POs are proved manually, and only a few are proved automat-
ically by Rodin’s tool. As R6 and E4 start the implementation
of the concrete key agreement process, the rest of the levels are
reusable for other protocols. Though it is still more sophisticated
in proving R6 than the other levels, the percentage of POs in the
reusable levels is 42.0%.

VII. FUTURE WORK

As the TPM-based security protocol, such as DAAODV, does
not require the entirety of the available TPM functions, we only
formalize parts of the interfaces of TPM in our proposal. Thus,
one direction of our future work is to expand our refinement
framework to more general applications by formalizing all the
interfaces of TPM, such as the following:
• Extend:When a newmeasurement is extended to the PCRs,
the state of the platform changes. To prevent the design
flaws, we need to make formal invariants to ensure that the
specific state only allows the specific operations.

• Seal: The command encrypts data and specifies a state in
which the TPM must be in order for the data to be de-
crypted. We need to ensure the adversary cannot get the
data in this state before sealing is called.

In addition, in our case study, we only prove the authenticity
and confidentiality in order to show how to use the lower level
of the refinement framework such that our refinement could
be extended. One possible extension is the general refinement
framework in prevention of deadlock. The goal is that when
users design new protocols, the constraint on deadlock is already
proven on the lower level of the refinement that users need not
to know how to make the invariant and prove it again. Though
the problem is not related to the security issue or TPM, it is also
a challenge of providing a general framework to guarantee this
property. The other one is to prove the anonymity of DAAODV
protocol. DAAODV is based on DAA and PBA, which are both
anonymous schemes. The purpose of applying these schemes
is to hide all private information, such as the configuration of
the platform. Thus, the anonymity of DAAODV needs to be
proved in the future work. Note that for illustrating the frame-
work more conveniently, we simplify the original DAAODV
protocol, therefore, the other future work is to prove the secu-
rity of more sophisticated original DAAODV.
It is worth mentioning that if the assumptions 1) or 2) in

Section III become invalid, the soundness of TPM and the upper
TCB need to be further verified. Since the implementation code
of TPM is large [12], it is hard to completely fulfill the assump-
tion 1). However, if the code is given publicly, there is a chance
to verify the specific commands of TPM before we use them.
Besides, some commands such as DAA scheme have been for-
mally verified [8], [9], and some other TPM APIs have been
verified as well [12]. It becomes much easier to only use the ver-
ified commands instead of verifying all the commands of TPM
first. So, if the assumption 1) is invalid, we should additionally
verify the soundness of the TPM commands which are used in
our protocol. As [12] provides a refined implementation on the
TPM commands, there are collaboration opportunities that we
could build a more complete refinement architecture which in-
cludes not only the components for application design but also
the verified TPM commands, such that the developers are more
confident about security of their application design.
To the assumption 2), another direction of the future work is

to formally verify the TCB. Since there have been a few ap-
proaches on designing and minimizing the TCB [6], [7], [36],
we could verify the TCB before applying it to our protocol ap-
plication.

VIII. CONCLUSIONS

In this paper, wemake C-code-like formal modeling to ensure
the security on the application level. The properties of TPM-
based security infrastructure, the extended Dolev-Yao attacker
model and the abstract communication environment are pre-
sented at the early refinement. In the case study, we refine a
TPM-based key agreement protocol and prove the POs to solve
AK problem. As a result, this approach ensures the security of
the protocol not only at the abstract protocol level, but also at
the concrete software level.
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APPENDIX A
NOTATIONS

The notations in Event-B are shown in Table V.

TABLE V
NOTATIONS IN EVENT-B
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